ساختمان يك خط انتقال نمونه
برای مشاهده ادامه ی این موضوع به ادامه مطلب بروید...
ادامه مطلب ...
مقدمه
از مهمترین منابع استفاده صلح آمیز از انرژی اتمی ، ساخت راکتورهای هستهای جهت تولید برق میباشد. راکتور هستهای وسیلهای است که در آن فرآیند شکافت هستهای بصورت کنترل شده انجام میگیرد. در طی این فرآیند انرژی زیاد آزاد میگردد به نحوی که مثلا در اثر شکافت نیم کیلوگرم اورانیوم انرژی معادل بیش از 1500 تن زغال سنگ بدست میآید. هم اکنون در سراسر جهان ، راکتورهای متعددی در حال کار وجود دارند که بسیاری از آنها برای تولید قدرت و به منظور تبدیل آن به انرژی الکتریکی ، پارهای برای راندن کشتیها و زیردریائیها ، برخی برای
تولید رادیو ایزوتوپوپها و تحقیقات علمی و گونههایی نیز برای مقاصد آزمایشی و آموزشی مورد استفاده قرار میگیرند. در راکتورهای هستهای که برای نیروگاههای اتمی طراحی شدهاند (راکتورهای قدرت) ، اتمهای اورانیوم و پلوتونیم توسط نوترونها شکافته میشوند و انرژی آزاد شده گرمای لازم را برای تولید بخار ایجاد کرده و بخار حاصله برای چرخاندن توربینهای مولد برق بکار گرفته میشوند.
برای مشاهده ادامه ی این موضوع لطفا" به ادامه مطلب بروید...
ادامه مطلب ...
ترانسفورماتورها یكی از مهمترین عناصر شبكه های انتقال و توزیع هستند . در ترانسفورماتورها انرژی الكتریكی در مس سیم پیچها ، آهن هسته ، تانك ترانس و سازه های نگهدارنده بصورت حرارت تلف می شود. حتی در زمانیكه ترانسفورماتور بدون بار است ، در هسته تلفات بی باری (NLL) بوجود می آید. در نتیجه مطالعات و بررسیهای انجام شده ، در 50 ساله اخیر محققان موفق شده اند با صرف هزینه ای دو برابر برای هسته ، تلفات بی باری را به یك سوم كاهش دهند. اخیراً با جایگزینی فلزات بیشكل و غیر بلوری (Amorphous) بجای آهن سیلیكونی درهسته ترانسفورماتورهای توزیع با قدرت نامی كوچكتر از 100 KVA ، تلفات بی باری باز هم كاهش یافته است . این كار هنوز در مورد ترانسفورماتورهای بزرگ با قدرت نامی بزرگتر از 500KVA انجام نشده است . اگرچه برای هر ترانسفورماتور ، 1 درصد توان نامی آن بعنــوان توان تلفـاتی در نظر گرفتـه می شود، اما باید توجه داشت كه آزاد سازی بخش كوچكی از این تلفات در طول عمر ترانسفورماتور صرفه جوئی كلانی به همراه خواهد داشت . در ترانسفورماتورهای قدرت معمول ، تقریباً 80% از كل تلفات ، مربوط به تلفات بارداری ترانسفورماتور (LL) است كه از این 80% ، سهم تلفات اهمی سیم پیچها 80 % بوده و 20 % دیگر مربوط به تلفات ناشی از جریانهای فوكو و شارهای پراكنده است . لذا تلاشهای زیادی جهت كاهش تلفات بارداری صورت می گیرد.
برای مشاهده ادامه ی این موضوع لطفا" به ادامه مطلب بروید...
ادامه مطلب ...
برای مشاهده ادامه ی این موضوع لطفا" به ادامه مطلب بروید...
ادامه مطلب ...
خطوط انتقال *VSC یا خطوط انتقال با مبدلهای منبع ولتاژی امروزه واقعیت و تحقق یافته و همچنان كه جنبه های خاصی از آن كاربرد می یابد بیشتر مورد استفاده قرار می گیرند. اولین سیستم انتقالVSC تحت عنوان طراحی خطوط HVDC سبك توسط شركت ABB ساخته شده است. خود مبدلهای منبع ولتاژی دارای كاربرد در كنترل ادوات FACTS و UPFC بوده است. اما چنانچه مبدلهای منبع ولتاژی بهمراه خطوط DC و یا كابل استفاده گردند تشكیل خطوط VSC را خواهند داد. در خطوط VSC همراه با كابل، چون در VSC از دیود با هدایت یكسو استفاده میگردد، لذا ولتاژDC در كابل نمی تواند هرگز جهت پلاریته خود را تغییر دهد. این ویژگی باعث می شود كه مشكل بارهای الكتریكی با قیمانده در فضای داخل كابلهای از بین رفته و نتیجتا مجاز به كاهش قدرت عایقی آنها شده كه این خود اجازه استفاده از فرآیند مفصل بندی در كابلها را میدهد. ویژگیهای فوق سبب كوچك، سبك و ارزان شدن كابل ها می گردند.
در خطوط VSC ولتاژ متوسط، میتوان كابلهای سبك و كوچك را در زیرزمین قرار داد. در گزارش اخیر IEEE كاربرد جالبی از خطوط VSC بین شهرهای New South Wales و Queensland در كشور استرالیا گزارش شده است. چون خطوط بصورت كابل زیرزمینی می باشند دارای مسائل محیطی كمتری در مقایسه با خطوط هوائی خواهند بود. در گزارش پروژه Directlink تأسیس یك خط VSC بظرفیت 180 مگا ولت آمپر با كابل زیرزمینی در سال 1999 توسط شركت ABB گزارش شده است. خطوط VSC نیز بطور ذاتی دارای خاصیت و ویژگی های ادوات FACTS بشرح زیر می باشند. 1- توانائی كنترل مستقل ولتاژ AC در هر یك از شینهای دو سر خط 2- با كنترل سریع توان میتواند برای افزایش میرائی نوسانات الكترومكانیكی توان در شبكه های AC استفاده گردد. 3- طرف انتهائی خطوط VSC میتواند صرفا بار الكتریكی بدون شبكه و ژنراتور باشد در اینصورت مبدلهای VSC میتوانند بار را با یك ولتاژ AC تحت یك دامنه و فركانس تعریف شده تغذیه نمایند. * Voltage Sourced Convertor با یك چنین مزایائی چنانچه هزینه و قیمت خطوط VSC قابل قبول باشد میتوانند در شبكه های ولتاژ متوسط بخوبی بكار گرفته شوند. بنابراین خطوط VSC میتوانند بعنوان عامل تقویت و ثبات سنكرونیزاسیون شبكه عمل نمایند. در یك VSC عناصر كلیدزنی یا از نوع GTO و یا TGBT می باشند كه بصورت روشن / خاموش كار كرده و میتوانند براساس الگوریتم PWM كنترل شوند. این الگوریتم میتواند در جهت حذف و یا كاهش هارمونیكی عمل نماید. با اعمال الگوریتم PWM در اینصورت حداقل 4 متغیر از خط VSC می باید كنترل شود. چنانچه در انتهای خط منبع ولتاژ ac وجود نداشته باشد در اینصورت ولتاژ و فركانس آن قابل كنترل می باشد. اما چنانچه در انتهای خط منبع ولتاژ ac وجود داشته باشد در اینصورت مبدل های VSC ولتاژ ac انتهائی را كنترل می نمایند. با بكارگیری خطوط VSC ویژگی سنكرونیزاسیون در شبكه های ac منتفی خواهد شد. از دیگر ویژگی های خطوط VSC در مقایسه با خطوط معمولی افزایش ضریب میرائی نوسانات الكترومكانیكی در شبكه ها می باشد. در حقیقت خطوط VSC نوعی از كنترل كننده های FACTS بوده كه قادر هستند ولتاژ AC شینهای ابتدا و انتهائی، توان انتقالی از خط، درجه سنكرونیزاسیون و ضریب میرائی نوسانات را كنترل نمایند.
احمد و سامان ![]() ![]() ![]() ![]() ![]() ![]() ![]() پيوندها ![]() نويسندگان |
|||||
![]() |